Finds marker genes at each hierarchical level specified by the tree, using the GE matrix provided in the ref_bpcells parameter, and the celltype labels provided in the input to ref_metadata. It identifies marker genes by using a function provided in the BPCells package, marker_features, which finds genes using the Wilcoxon test.
Source:R/FindMarkerGenes.R
FindMarkerGenes.Rd
Finds marker genes at each hierarchical level specified by the tree, using the GE matrix provided in the ref_bpcells parameter, and the celltype labels provided in the input to ref_metadata. It identifies marker genes by using a function provided in the BPCells package, marker_features, which finds genes using the Wilcoxon test.
Usage
FindMarkerGenes(
ref_bpcells,
ref_metadata,
tree,
n_genes = 50,
metadata_cluster_column = "cell_type",
metadata_cell_id_column = "cellid",
n_cells_sampled = 500
)
Arguments
- ref_bpcells
A GE reference dataset in BPCells format.
- ref_metadata
A dataframe with metadata that includes a column providing celltype labels used for classification and a column providing cell ids.
- tree
A tree structure (in treedata format) to find marker genes for. Will find marker genes that distinguish pairs of classes at each level of the hierarchy.
- n_genes
Number of marker genes, per pairwise class, you want to find.
- metadata_cluster_column
The name of the column in the metadata giving the celltype labels.
- metadata_cell_id_column
The name of the column in the metadata giving the cell IDs.
- n_cells_sampled
Number of cells per class used to find marker genes.
Value
A list providing marker genes that distinguish each pairwise combination of celltypes, at each level of the hierarchy in the tree you provided.
Examples
data("train_ex_data_bpcells")
data("train_ex_metadata")
data("test_ex_data_bpcells")
data("test_ex_metadata")
possible_cell_classes = train_ex_metadata$seurat_annotations %>% unique()
equal_tree = CreateEqualTree(cell_labels = possible_cell_classes)
marker_genes = FindMarkerGenes(ref_bpcells = train_ex_data_bpcells, ref_metadata = train_ex_metadata, tree = equal_tree, metadata_cluster_column = "seurat_annotations", metadata_cell_id_column = "cell_label")
#> Test passed ๐ฅ
#> Test passed ๐
#> Test passed ๐
#> Test passed ๐
#> Test passed ๐ฅ
#> Error in loadNamespace(x): there is no package called โBPCellsโ